RAM KARAN SHARMA

PRATYAYAS IN INDIAN METRICS

Pratyayas in Indian Metrics stand for such devices as determine the various statistical data relating to metrical groups of various categories. They are six in number as follows:

1. Prastāra (determination of all permutations and combinations of a given metrical group).
2. Nasta (determination of the syllabic sequence in a given serial number of a prastāra).
3. Uddisța (determination of the serial number itself on the basis of a given syllabic sequence in a prastāra).
4. Ekadvyādiladgakriyā (computation of the items of a prastāra based on the number of heavy and/or light syllables).
5. Sainkhyāna \{determination of the total number of permutations and combinations (even without the prastāras) in a given metrical group\}.
6. Adhvayoga (the method of spacing in working out prastāras).

Let us see for example how the six pratyayas work in a tri-syllabic (equisyllabic - Varnasamavrtta) metrical group called Madhyā

1. Prastāra

Procedure:

We have to write all heavy syllables in the first line. Then below the first heavy syllable we have to write the light syllable; others on the right side are to be copied as they are in the above line. This procedure is to be followed all throughout until all are converted into light syllables. All light Syllables towards the left in the line are also required to be converted into heavy ones until the stage of "all light" is arrived at.

Thus the prastāras of Trisyllabic group would be:-

S.No. Sequence of Syllables

1.	-	-	-	magana	Nārī
2.	\checkmark	-	-	yagaṇa	-
3.	-	\checkmark	-	ragaṇa	Mrgi
4.	\checkmark	\checkmark	-	sagaṇa	-
5.	-	-	\checkmark	tagaṇa	-
6.	\checkmark	-	\checkmark	jagana	-
7.	-	\checkmark	\checkmark	bhagana	-
8.	\checkmark	\checkmark	\checkmark	nagana	-

2. Nasta

We may be aware of the serial number of a Prastāra but its syllabic sequence may have been lost (nasṭa). The serial number itself helps us in restoring the syllabic sequence. If the serial number is even, then the first syllable must be light, heavy otherwise. If the serial number is uneven and so it cannot be halved then it has to be halved after adding one to it. If that half be also uneven, the second syllable too would be heavy, light otherwise. The same procedure is to be continued until the syllabic count of a given syllabic group is over. Thus let us take the serial No. 5 of the trisyllabic group for example.

As this is an uneven number, so the first syllable would be heavy No. 5 being an uneven number is halved after adding one $(5+1=6 \div 2=$ 3) to it. So No... 3 being also an uneven number, the second syllable too is heavy. Again No. 3 is to be halved after adding one to it $(3+1 \div 2=2)$. No. 2 being an even number, the third syllable would be light. So the Nasṭa of the serial No. 5 of a Trisyllabic group would be - - し.

3. Uddisṭa

If we have the syllabic sequence of a given serial number of a prastāra but we have to locate the serial number (Uddisṭa) itself, we have to apply the principle of "successive doubling and additions." We have to write the Syllabic sequence as such. We have then to write 1 above the first syllable, two above the second one, four above the third one and go on doubling the number until we reach the last limit of a given syllabic group. Then all the numbers, written above "light syllables only" are to be counted and then 'another one' added to it. That would be the (Uddișta) serial number of that syllabic sequence in a given syllabic group. So the serial no. of the following sequence of a trisyllabic group is worked out as 5:

12

- - $\quad 4+1=5$

4. Ekadvyādilagakriyā

This pratyaya gives us the statistical data about the number of metres in a given syllabic group, classified according to the number of heavy and/or light syllables. If we have to work out such statistical data about the trisyllabic group, we have to have four columns (i.e. one extra column) each, both horizontal and perpendicular, with No. 1 written in all the four columns (left to right and top to bottom) as follows:

1	1	1	1
1	2	3	
1	3		
1			

Then we have to write below the numbers one to three (i.e. all the numbers of the given syllabic group). We have to fill in the gaps of all the succeeding columns, here just one column below 2) by writing the number(s) representing the sum total of the number towards the left and the diagonal number(s) above (here $1+2=3$). We have to continue this process until all the columns but one are filled in (here it is the fourth column from the top). So on the basis of the above exercise, the following would be the statistical data of the metres in a trisyllabic group

1 metre with all (3) heavy syllables.
3 metres with 2 heavy and 1 light syllable.
3 metres with one heavy and two light syllables.
1 metre with all light syllables.

5. Sa $\dot{m} k h y a ̄ n a$

This pratyaya represents a device to determine the total number of metres in a given syllabic group even without working out all its prastāras (permutations and combinations). The procedure is very simple. Write the first well known line of the prastāra of a given syllabic group. As we did for uddisṭa let us apply the principle of successive doubling and addition. Count all the numbers placed above the syllables and then add One to it. That would be the total number of metres in a given metrical group. Note that while in Uddista we have to count the numbers placed above the light syllables only, here we have to count every number.

Thus the total number of metres in a Trisyllabic group can be worked out as under :
$124 \quad 1+2+4=7+1=8$

The same total number can be arrived at by counting all the Ekadvyädilagakriyā numbers together.

6. Adhvayoga or Meru

Prastāra being the most significant pratyaya we have to have proper spacing under each line, so as to facilitate rectification of possible mistakes in a given line and also to work out Naṣṭa and Uddiṣta. So the Adhvayoga of a Trisyllabic prastāra would be 15, as shown below:-
1.
la.
2.

2a.
3.

3a.
4.

4a.
5.

5a.
6.

6 a .
7.

7 a .
8.

Illustrative pratyayas of the six-syllabic group (Gāyatrī) of metres are also appended for clarity and rechecking.
7. Its interesting to note that metricians follow the above pattern of prastāras, even while giving the details of the gaṇas of Vārṇika metres. The following aphorisms of Pingalanāga are quite relevant from an illustrative point of view:

myarastajabhnagairlantair ebhir daśabhir akṣaraị̣
Samastain vānmayamं vyāptain
trailokyam iva viṣnunā // 1.6

The illustrations provided in this paper, all relate to the equi-syllabic vārṇika (varnasamavrtta) group of metres. It is perhaps more convenient to work out the various pratyayas for these metrical groups. The maximum count of prastāras of the highest 26-syllabic (utkrti) group of varnasamavrtta metres is worked out at 67108864 (vide Ch. 3, Vṛttaratnākara).

The formulas for working out these pratyayas given by Pingālanāga or other succeeding metricians like Vedarabhatṭa are simple enough.

For a modem computer scientist the whole of the pratyayic procedure may appear to be obsolete and out dated. But what is more important is that we may try to identify the basic logic behind the various formulas mentioned above which are so infallibly and miraculously accurate.

In fact on the basis of a deep study into these pratyayas, my esteemed friend and colleague, Prof. B. Van Nooten in his paper enti-
tled Binary Numbers in Indian Antiquity remarks: "I have found good reason, to believe that the rudiments of binary calculation were discovered in India well in advance of their discovery by the German Philosopher Cottfried Leibnitz in 1695."

Notes :

> 1. Prastāro naṣtamuddiṣtam ekadvyādilagakriyā samkhyānam adhvayogaś ca ṣạ̣ ete pratyayāḥ smrtāḥ Vṛttaratnākara 6.1
2. Pāde Sarvagurāvādyāl laghum nyasya guror adhah Yathoparitatha s'eṣain bhūyaḥ Kuryād amuin vidhim Ūne dadyād gurūn eva yāvat sarvalaghur bhavet prastāroyain samākhyataś chandovicitivedibhị̣
3. naștasya yo bhaved añkas tasyā’rdhe'rdhe same ca lah
viṣame cai kamādhāya tasyā'rdhe'rdhe gurur bhavet
4. Uddisṭain dvigunan ādyān upary añkan samālikhet
laghustha ye tu tatrañkās taiḥ saikair miśrito bhavet
6. Lagakriyān̉kasandohe bhavet samkhyā viniśrite uddiș̣āñkasamāhāraḥ saiko vā janayed imām
5. Varnān pṛthagbhavān saikān auttaradharyataḥ sthitān ekādikramataś caitān upary upari nikșipet upāntyato nivarteta tyajann ekaikam ūrdhvatah uparyādyad guror evam ekadvyadilagakriyā //
id. 8
7. Saṁkhyai va dvigunai' konā sadbhiradhvā prakīrtitah
Vṛttasyā'ñgulikī vyāptir adhah kuryāt tathā'ngulim
id 9
Cf Chandaḥśāstra 8.20-35

Bibliography

1. Srī Pingalanāgaviracitam Chandaḥ śāstram with Halāyudha Bhațta's Mṛtamjjīvanī commentary Madhusudana Vidyavācaspatis Chandonirukti ed. Paṇ̣̣itakedaranath and reedited with visessyakaraṇī notes by Vidyaratnākara Ananta Sharma
Parimal Prakasana, Delhi-Ahmedabad, 1981
2. Vṛttaratnākara by Kedārabhaṭa with Tātparyaṭīkā of Trivikrama, Sukavihrdayanandinī of Sulhaṇa, Chandovṛtti of Somachandra and Pañcikā of Ramachandra kavi
ed. Aryendra Sharma and others, Samskrta parisad Osmania University, Hyderabad, 1969

3 Vṛttaratnākara by Kedārabhaṭa
ed. Śrīdharānanda Śāstrī Ghildial with Prajñātoṣiṇi commentary and Hindi
Translation and notes
Lahore, 1937

Appendix

Illustrative Pratyayas of the Gayatrī (six-syllabic) group of metres.

1. Prastāras

1.	-	-	-	-	-	33.	-	-	-	-	-	\checkmark
2. \checkmark	-	-	-	-	-	34.	\checkmark	-	-	-	-	\checkmark
3.	\checkmark	-	-	-	-	35.	-	\checkmark	-	-	-	\checkmark
4. \checkmark	\checkmark	-	-	-	-	36.	\checkmark	\checkmark	-	-	-	\checkmark
5.	-	\checkmark	-	-	-	37.	-	-	\checkmark	-	-	\checkmark
6. \checkmark	-	\checkmark	-	-	-	38.	\checkmark	-	\checkmark	-	-	\checkmark
7.	\checkmark	\checkmark	-	-	-	39.	-	\checkmark	\checkmark	-	-	\checkmark
8. \checkmark	\checkmark	\checkmark	-	-	-	40.	\checkmark	\checkmark	\checkmark	-	-	\checkmark
9.	-	-	\checkmark	-	-	41.	-	-	-	\checkmark	-	\checkmark
10. \checkmark	-	-	\checkmark	-	-	42.	\checkmark	-	-	\checkmark	-	\checkmark
11. -	\checkmark	-	\checkmark	-	-	43.	-	\checkmark	-	\checkmark	-	\checkmark
12. \checkmark	\checkmark	-	\checkmark	-	-	44.	\checkmark	\checkmark	-	\checkmark	-	\checkmark
13. -	-	\checkmark	\checkmark	-	-	45.	-	-	\checkmark	\checkmark	-	\checkmark
14. \checkmark	-	\checkmark	\checkmark	-	-	46.	\checkmark	-	\checkmark	\checkmark	-	\checkmark
15.	\checkmark	\checkmark	\checkmark	-	-	47.	-	\checkmark	\checkmark	\checkmark	-	\checkmark
16. \checkmark	\checkmark	\checkmark	\checkmark	-	-	48.	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
17. -	-	-	-	\checkmark	-	49.	-	-	-	-	\checkmark	\checkmark
18. \checkmark	-	-	-	\checkmark	-	50.	\checkmark	-	-	-	\checkmark	\checkmark
19.	\checkmark	-	-	\checkmark	-	51.	-	\checkmark	-	-	\checkmark	\checkmark
20. \checkmark	\checkmark	-	-	\checkmark	-	52.	\checkmark	\checkmark	-	-	\checkmark	\checkmark
21. -	-	\checkmark	-	\checkmark	-	53.	-	-	\checkmark	-	\checkmark	\checkmark
22. \checkmark	-	\checkmark	-	\checkmark	-	54.	\checkmark	-	\checkmark	-	\checkmark	\checkmark
23.	\checkmark	\checkmark	-	\checkmark	-	55.	-	\checkmark	\checkmark	-	\checkmark	\checkmark
24. \checkmark	\checkmark	\checkmark	-	\checkmark	-	56.	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
25. -	-	-	\checkmark	\checkmark	-	57.	-	-	-	\checkmark	\checkmark	\checkmark
26. \checkmark	-	-	\checkmark	\checkmark	-	58.	\checkmark	-	-	\checkmark	\checkmark	\checkmark
27. -	\checkmark	-	\checkmark	\checkmark	-	59.	-	\checkmark	-	\checkmark	\checkmark	\checkmark
28. \checkmark	\checkmark	-	\checkmark	\checkmark	-	60.	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark
29. -	-	\checkmark	\checkmark	\checkmark	-	61.	-	-	\checkmark	\checkmark	\checkmark	\checkmark
30. \checkmark	-	\checkmark	\checkmark	\checkmark	-	62.	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
31. -	\checkmark	\checkmark	\checkmark	\checkmark	-	63.	-	\checkmark	\checkmark	\checkmark	\checkmark	
32. \cup	\checkmark	\checkmark	\checkmark	\checkmark	-	64.	\checkmark	\smile	\checkmark	\checkmark		

2. Illustrative Nastas (syllabic sequencies) of S.No. 51 and 58 of gāyatrī group.

S.No. 51

i) 51 being an uneven number, first syllable: -
ii) $51+1=52 \div 2=26$ being an even number, second syllable:
iii) $26 \div 2=13$ being an uneven number, third syllable: -
iv) $13+1=14 \div 2=7$ being an uneven number, fourth syllable: -
v) $7+1=8 \div 2=4$ being an even number, fifth syllable: \smile
vi) $4 \div 2=2$ being an even number, sixth syllable: \smile

So S.No. 51
S.No. 58
i) 58 being an even number, first syllable:
ii) $58 \div 2=29$ being an uneven number, second syllable: -
iii) $29+1=30 \div 2=15$ being an uneven number, third syllable: -
iv) $15+1=16 \div 2=8$ being an even number, fourth syllable:
v) $8 \div 2=4$ being an even number, fifth syllable:
vi) $4 \div 2=2$ being an even number, sixth syllable: \smile

So S.No. 58
3. Illustrative uddisțas (Serial numbers) of six-syllabic metres with syllabic sequences.
i)

and

ii)

i)

$$
\begin{array}{cccccc}
1 & 2 & 4 & 8 & \underline{16} & \underline{32} \\
- & - & - & - & \smile & \smile \\
16 & +32 & +1 & =\text { S.No } 49
\end{array}
$$

ii)

$$
\begin{array}{llllll}
1 & \underline{2} & 4 & \underline{8} & \underline{16} & \underline{32} \\
- & \checkmark & - & \smile & \checkmark \\
2+8+16+32+1 & =\text { S.No. } 59
\end{array}
$$

4. Ekadvyādilagakriyā-classification of all six-syllabic metre according to the number of heavy and/or light syllabic

1	1	1	1	1	1	1
1	2	3	4	5	6	
1	3	6	10	15		
1	4	10	20			
1	5	15				
1	6					
1						

So
1 metre with all six heavy syllables
6 metres with 5 heavy and 1 light syllable
15 metres with 4 heavy and 2 light syllables
20 metres with 3 heavy and 3 light syllables
15 metres with 2 heavy and 4 light syllables
6 metres with 1 heavy and 5 light syllables
1 metre with all six light syllables
5. Saimkhyāna - computation of the total number of metres in Gāyatrī (six syllabic) group of metres even without prastāras

$$
\begin{array}{lcccccc}
& \begin{array}{ccccc}
1 & 2 & 4 & 8 & 16 \\
\text { syllables: } & \text { (i) } & \text { (ii) } & \text { (iii) } & \text { (iv) }
\end{array} \text { (v) } & \text { (vi) } \\
& & \\
& & +2+4+8+16+32+1=64
\end{array}
$$

The same total number is arrived at by adding all the Ekadvyādilagakriyā number

$$
1+6+15+20+15+6+1=64
$$

6. Adhvayoga

The total number of Prastāras of six-syllabic metres being 64, the total space coverage (adhvayoga) is:
$64 \times 2-1=127$

1
1a
2
2a
3
3a
4
4a
and so on. The double spacing will continue till 63a. There will be no double spacing for the last number, i.e. 64.

